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Model—Directed Learning of Production Rules (I)
• by

Bruce C. Buchanan and Tom 11. Mitchell
Heuristic Programming Project
Department of Computer Science

Stanford University
Stanford , CA 94305

ABSTRACT

The Meta—DENDRAL program is described in general terms that are
intended to clarify the similarities and differences to other learning
programs. Its approach of model—directed heuristic search through a

5 complex space of possible rules appears well suited to many induction
tasks. The use of a strong model of the domain to direc t the rule
search has been demonstrated for rule formation in two areas of
chemistry. The high performance of programs which use the generated
rules attests to the success of this learning strategy.

• 1 INTRODUCTION

• Knowledge—based artificial intelligence programs derive their

• power from the richness and depth of their knowledge bases. It follows

that careful construc tion of the knowledge bases is an obvious

prerequisite for high performance in such systems, yet we have few

alternatives to hand—crafting these for each new program . We are better

off than we were several years ago, however , for it is no longer

necessary to hand—craft a whole program. A rather general program ,

e.g., a production rule interpreter , can constitute the problem solving

machinery for common problems in a variety of domains. The task—

specific knowledge is then encoded in tables of inferenc e rules ,

definitions , and procedures that test pred icates in the domain and

execute task—specific actions.

Waterman’s early work [13] showed the advantages of using a

productio n rule encoding of knowledge. It also provided a model for

(1) This work was supported by the Advanced Research Projects
Agency under contrac t DAHC 15—73—C—043 5 , a nd by the National Ins t i tu tes
of Heal th under grant  RR 0061 2—07.
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learning productions by a program. Davis has nade a significant

contribution to our understanding of interactive knowledge acquisition

[3] in which a human expert’s knowledge is elicited and checked by a

sophisticated acquisition program.

The Heuristic DENDRAL programs (4 )  are s t ructured to read much of

their task—specific knowledge from tables of production rules and to

execute the rules under rather elaborate control struc tures. These

programs interpret analytic data from organic chemical samples in order

~ 
.4 to help chemists determine the molecular struc tures of the samples. For

a number of reasons, we made little progress with the interactive

app roach to building a knowledge base for DENDRAL . Instead we

constructed another set of programs , collec tively called ~1eta—P E~fl)RAL,

that aid in building the knowledge base. Heta—DENE)RAL is described

below in general terms that are intended to clarify the similarities and

differences to other learning programs (see [12]).

2 THE TASK DOMAIN

2.1 Rule Formation

The rule formation task that  M eta—DENDRAL pe rform s is s imilar  to

the tasks of g rammatical inference , seque nce extrapolat ion , and concept

fo rmation [ 6 ] , ( 5 ] , [ 1 5 ] .  Programs that perform these tasks can all be

cha racterized as “ induc t io&’ p rog r ams. Broadly speaking , the induc t ion

task is to f ind a general rule that  can generate , cla ssif y ,  o r exp lain a

t raining set of specific instances , and correctly predict new instances.

The t raining set can be thought of as a set of I/ O pairs  from a “black
box ” machi ne; the induc t ion program is supposed to discover  the

gene ra t ing pr inciple used in the machine.

2.2 Mass Spectroinetry

2
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As described previously (1], the black box whose behavior we are

attempting to characterize is an instrument for chemical analysis known

as a mass spectrometer. The mass spectrometer bombards a small sample

of an unknown chemical wi th high energy electrons breaking individual

molecules into many fragments and causing atoms to migrate between

L f ragments .  Resul ts  of these processes are observed in a recording of the

masses of the fragments that are collected. The data are usually

presented in a bar graph of the relative abundance of each fragment (Y—

~ axis) plotted against fragment mass (X—axis). From these data and a

stronc model of mass spectrometry, a skilled chemist can reconstruc t

much of the molecular structure of the unknown compound.

Throughout this paper we will use the following terms to describe

the actions of molecules in the mass spectrometer :

1) Fragmentation — the breaking of an individual
graph (molecule) into fragments by breaking a subset of
the edges (bonds) within the graph.

2) Atom migration — the detachment of nodes (atoms)
from one fragment and their reattachment to a second
fragment. This process alters the mass of both
fragments.

3) Mass spectral process , or process — a
fragmentation followed by zero or more atom migrations .

One I / O p air for  the instrument is considered to be: (INPUT ) a

chemical sample with uniform molecular structure (abbreviated to “a

st r uctur e” ) ,  and (OUT P UT ) one X—Y point from the bar graph of fragment

masses and relative abundances of f ragments  (o f t en  referred  to as one
peak in the mass spectr um , o r spectrum) .

Since each structure spectrum contains 50 to 100 different data

points , each structur e appears in many I/O pairs. Thus, the program

must look for several generating princ iples , or processes , tha t operate

on a structure to produce many data points. In addition , the data are

not gua ranteed correc t because these are empirical data from an

electronic instrument that produces some background noise. As a result ,

the program does not attempt to explain every I/O pair. It does ,

however , choose wh ich data points to explain .
4 .

I
3
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2.3 Syntax of Rules

The model of mass spectrometrv used by chemists is often expressed

in sets of production rules. The rules (when executed by a program)

constitute a simulation of the fragmentation and atom migration

processes that occur inside the instrument . The le f t—hand  side is a

t description of the graph structure of some relevant piece of the

molecule. The ric~ht—Iiand side is a list of processes which occur:

specifically, bond cleavages and atom migrations. For example, one

simple rule is

(Ri) N — C — C ———— > M — C * C

where the asterisk indicates breaking the bond at that position and

recording the mass ‘f the fragment to the left of the asterisk. ~ o

• mig ra t ion  of atoms between f ragments  is predicted by this rule.

Although the vocabula ry f o r  describing individual atoms in
sub~ rap hs is sma l l  and the g ramma r of subgraphs is simple , the size of

the sub c~raph search space is immense . For examp le , f o r  suhgraph s
c o n t a i n i n g  6 atoms , each with any of roughly 20 a t t r i b u t e — v a l u e
specifications , there are roughly 20**6 possible subgraphs. In add i t i on
to the connectivity of the subgraph, each atom in the subgraph has four

attributes specified : (a) Atom type (e.g., carbon), (b) Number of

connected neighbors (other than hydrogen) , (c) Number of hydrogen

neighbors , and (d) Number of doubly—bonded neighbors.

The language of processes (right—hand sides of rules) is also

simple: one or more bonds from the left—hand side may break and zero or

more atoms nay migrate between fragments.

2.4 Semantic Interpretation of Rules

The interpretation of rule Ri in the above example is that if a

molecule co nta ins  a n i t rogen  atom and two carbon atoms bonded as N—C—C

then it wi l l  fragment in the taass spect rometer  between the two carbon

atoms , a nd the piece conta in ing the n i t rogen wi l l  be recorded. In a

4
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large molecule, this rule may apply more than once. For example , C~l3—

C112—dH2—NH—CH2—CH3 will show two fragments from the application of this

rule:

CH3—CH2—C112—NH—CH2
and CH2—NI1—CH2—CH3

For a number of reasons the data points are not uniquely

associated with a single fragmentation and atom migration process

(rule). For example, a single nrocess may occur more than once in a

molecule (as in the above example), and more than one process nay

• produc e identical fragments (and thus produce peaks at the same mass

points in the bar graph).

2.5 Space of Instances

In order to learn rules of this form, the Meta—DENDRAL program is

• presented with many examples of actual I/O pai rs from the mass

spectrometer. Each 1/0 pair is described as a molecular  grap h

structure , together wi th a data point from the mass spectrum for tha t

structure. The rules to be learned constitute a description of the

relevant transfo rmations in the b lack box . Typically we start with a

training set of six to ten related molecules and their associated bar

graphs, each containing 50—1 50 data points , or 300—1500 I/O pairs.

These are drawn from an infinitely large space of possible instances , of

wh ich only a few for each structural class of molecules are available

from libraries of spectra.

3 THE WORLD MODEL

3.1 Reasons for Introducing Strong Biases

Purely statistical learning programs find associations tha t are

indicated by the data without introducing judgments about the

ne~ ningfulness of those associations . This is an advantage at times

~
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when an investigator’s bias inhibi ts  seein g associations or when an

inves tigator is merely looking for all associations. It is a

disadvantage , however , when the number of associat ions is so large tha t

the mean ing ful ones are lost in the chaff. Statistical pa ttern
recognition programs have been applied to mass spectrometry with some

success. Clusters of data points  are found to be associated w i t h

families of molecules 80—90% of the time [7]. These programs , howeve r,

produc e no meaningful explanations of wh y the associations are found.

In contrast to statistical approaches , H eta—DE N DRAL u t il i 7 as  a

semantic model of the domain. This model has been included for two

impor tan t  reasons . Firs t , i t  provides guidance fo r  the ru le  f o r m a t i o n

program in a space of rules that is much too large to search

• 
. exhaus t ive ly ,  especially when the input data have ambiguous

interpretations . F~ cond , it prov ides a check on the mean ing f ulness of

• the associations produced by the program , in a doma in where the tr iv ial

or mean ing less associations far outnumber the importan t ones.

• 3.2 The Half—Order Theory

The base—level , or zero—order theory of mass spectrometry states

t ha t  every subset  of bonds wi thin a molecule may break , and tha t tne

resul ting fragmen ts plus or minus migrating atoms will all be recorded.

This zero order  model of mass spec t romet ry  is not  s p e c i f i c  enoug h to

effectively constrain the rule search. Therefore , some general

guidelines have been imposed on it in the so—called “hal f—order ” theor’~.

The h a l f — o r d e r  theory  asser ts  t h a t  bonds w i l l  brea k and a toms w111

migrate to produc e data points , according to the following constraints.

Cons t ra in t s  on f r a g m e n t a t i o n s :
Double bonds and tr iple bonds do r iot  b reak .
No aromatic bonds break.
Only f r a g m e n t s  l a rger  than 2 carbon atoms show up In the data .
Two bonds to the same carbon atom cannot break together.
No more than 3 bonds break in any one f r a g m e n t a t i o n .
No more than 2 complete  f r a g m e n t a t i o n s  occur in one process .
At most 2 r ings  f r agmen t  in a m u l t i p l e  s tep  process.

Constraints on atom migration:
At most  2 h yd rogen atoms can mi g rat e  a f t e r  a f r a g m e n t a t i o n .
At most  1 H20 u n i t  is lost a f t e r  any f r a g m e n t a t i o n .

6
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At most 1 CO un i t  is lost a f t e r  any f r a g m en t a t i o n .

One of the most helpful features of this model is its flexibilit y .

Any of the parameters  can be easily changed b y a chemlsL  w i t h  o t h e r

• preconceptions. Any of these assumptions  can be removed and , -is

d isc ussed in the fol lowi ng sec tion , additional statements can he added.

This powe r to guide rule  fo rmat ion  wil l  resul t  in the p r o~’ra. -~
discovering only rules wi thin a we l l—known f ramewo rk. On the  n t ~it -r

hand , it  also results in rules tha t  are meaning f u l  fo r  the  domain .

3.3 Augmenting the Half—Order Theory

A chemist will  o f t e n  know more about  the mass spec t rometr ~’ of -i

class of mo lecules than is embodied in the h a l f — o r d e r  t heo ry .  In these

cases it is impor tan t  to augment  the  program ’s mode l b y specif yitw

c l a s s — s p e c i f i c  knowled ge to the program . This also provides a way of

fo rming  rules  in the context of additional intuitions and biases about

mass spec t rom e t ry.  A chemis t  can thus  see the “most interesting ” rul es
(as de f ined  by the augmen ta t ions)  b efore  the o ther  ru les .  ror example ,

4 
one migh t  he in terested f i r s t  in rules t h a t  m e n t i o n  at least  one oxygen

atom be fo re  the numerous ( and ge n e r a l l y  less i n t e r e s t i n g )  rules  t ha t

men t ion only carbon and h ydrogen substructures.

4 THE LEARNING STRATEG Y

We began with the assumption that numerical parameter estimat ion

methods we re not sufficient for the kinds of ru l e s  we wa n t e d  the  pr o2r an

to discove r in this domain due to the large number of variables required

to describe subgraphs. ‘Je also wanted a chance to exp lore the power of
heuristic search in a lr jrnlng program , in the belief that efficient

selection of alternative explanations is a large part of scientific

discovery. As mentioned above , we ilso wanted to make rule discovery a

model—directed procedure.

As descr ibed  in more d e t a i l  be low , the  l e a rn ing  pr oqram is based

I
.
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on a ~en e r at o r  of p r o d u c t i o n  rules of a p rede te rmined  s y n tax  opera t ing

under the constraints of a semantic world model. In common with other

induction orograms , it also contains an instance selection component and

a cr itic for evaluating potential rules.

L
4 .1  Instance Selection

Unl ike the sophisticated instance selection procedure described by

Simon and Lea [ 1 1] ,  Neta—DEIIDRAL merely looks at the next lit) pair , •

— 
which is the next data point for the current molecule or , when there are

no more for this nolecule , the first data point for the next molecule.

For each iteration through the learning cyc le , training data are

presented several spectra at a time , and are then interpreted an~ 

~ri ~ed ~cfore any ru le  formation take s place. In Hunt ’s terms [6]

t~~e data are presented in parallel , and no t seq uen tia lly ,  f o r  eac h

iterat iv e step.

Some interesting variations can be introduced to improve the

instance selection procedure. For exam p le , we have suggested elsewhere

[1] allowi ng the program to request new data that will answe r specific

questions raise l upo n examination of the current best rule set.

However , the cos t of obtaining new data can be prohibitive in cases

• where chemical samples are di fficu lt to obtain. Thus , the progran

cannot assume tha t it will receive each training instance which it

req uests.

4.2 The Cr itic

Any learning system must emp loy a critic to compare current

performance with some desired standard . In ~1e t .a—DFNI)P.AL the re ar e  two

critics — on~ associated with rule generation and the othe r w i t h rule

m odific ation. Bo th critics rel y heavily upon examining evident i.i~

support ti r rules in the training data . Each rule is evalua ted in term ~

~ i t .~ po sitive evidenc e (correct exp lanations of data ,~oints) and its

8
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n e g a t i v e  ev idence ( incor rec t p r e d i c t i o n s  a s soc i a t ed  w i t h  the  r u l e ) .

Both critics trea t evidence which is uniquely explained by a r u l e

(unique pos itive evidence) differen t ly fr om evidence wh ich is shared by

several rules. In p a r t i c u l a r , a data point wh ich can he exp lained hv

only one rule is stronger evidence for the rule than a data point wh ich

has several alternate explanations.

The rule generation critic analyses cand idate rules in terms of

their positive evidence only; for reasons of efficienc y it does not

consider negative evidence. If the positive evidenc e of a cand idate

rule exhibits characteristics typ ical of good rules , then the critic

adds this candidate rule to the list of output rules. Otherwise it

decides whether the candidate rule should be further refined and

recons idered or should be abandoned.

The rule modification critic analyses both positive and negative

evidence of individual rules in order to fine—tune each rule. Since

rule modification involv es several distinct tasks (explained belou) the

critic makes several types of decisions. The criteria used for nakino

all of these decisions can be summarized as follows .

1. The set of rules as a whole shoul d be made as compact and

correct as possible without decreasing the positive evidence of

the rule set.

~. Rules  shou ld  be mod i f i ed  to increase  t h e i r  p o s i t i v e  evidenc e

vithout increasing negative evidence.

3. Rules  shou ld  be m o d i f i e d  to decrease the i r  nega t ive  ev idence

without decreasing their unique positive evidence.

• 4.2.1 Cred it Assignment

After evaluating perfo rmance , the critic must assign credit (or

bl ame) to specific rules or components of rules. This credit assignment

L 

~ r h ! e n  i s  an in s t a n c e  of .1 l a r g e  class of such problems wh ich have been

r ecogn ized  f o r  some t ime [8] as i m p o r t a n t  to l e a r n i n g  p rograms .  ~1hen

blame for poor n e r f o r m a u c e  can  be assigned to  a component  of a r u l e ,

~~~~ ficat ions t~~~ tha t coiip onent are attempted.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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For the ru le  genera t ion  c r i t i c , c redi t  assignment  is qu i t e  s i m p l e .

Dur ing the rule search it must  c red i t  ind ividual f e a t u r e s  in the l e f t

hand side of a rule for the evidenc e collected by the rule. Therefore ,

as each new f e a t u r e  is added to a ru le  i ts  e f f e c t  on the rule ’s

supporting positive evidence is examined. If the effect is unfavorable

(see section 4.3.2) the new feature receives the blame and is removed

immediately  f rom the ru le .

There are three credi t  assignment problems d u r i n g  ru le

m o d i f i c a t i o n  corresponding to the three decision c r i t e r i a  l i s ted  above.

(A)  In order  to make the rule  set more concise , the c r i t i c  mus t

ass ign c redi t  among redundant  rules fo r  explaining a spec i f i c  d a t a

po in t .  Cred i t  is assigned to the ru le  wi th the s t rongest  evidence over

the  e n t i r e  t r a i n i n g  data set .  S t r e n g t h  of ev idenc e is a measure  of a

ru l e ’s p o s i t i v e  and nega t ive  ev idence weighted by the average i n t e n s i t y

• (Y—co m pone n t )  of the da ta  po in t s  which the ru le  explains .  In the event

t h a t  two redundan t  rules  have e q u a l l y  s t rong  evidenc e , credit  is g iven

to the  rule wi th  the s imple r  l e f t  hand side.

( B )  In o rde r  to increase the posi t ive  ev idence of a ru le , some

attribute value in the left hand side of the rule must be made less

s p e c i f i c . The c r i t i c  must  search fo r  an overl y spec i f i c  f e a t u r e  to

blame f o r  exclud ing add i t iona l  pos i t ive  evidenc e fo r  the ru le .

Cu rren tly the critic must search by tr ial and error for such a feature.

(C) In order to remove negative evidenc e from a rule , the cr itic

must assign blame to some overly general feature. The set of attribute

values common to positive evidenc e instances provides a menu of possible

rule attribute values. Attribute values from this list are added to the

r u l e  to remove the nega t ive  evidence.

4.3 The Learning Cyc le
The learn ing cyc le is a series of “plan—generate—test ” steps as

• found in many Al sys tems [4]. After pre—scanning a set of severa l

10
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hundred I/O pairs , the  program searches the space of ru les  f o r  p l a u s i b l e

explanations and then modifies the rules on the basis of detailed

testing. l~hen rules generated f rom one t ra in ing set are added to the

model , and a second (or nex t )  block of da ta exam ined, the rule set is

f u r t h e r extended and modi f i ed  to exp lain the  new data . That  is , the

program can now iteratively modify rules formed from the initial

t raining set (and add to them) , bu t  it is cur rently unable to “undo ”

rules. Details of each of these processes are provided below.

4 :

4.3.1 Data Interpretation

The p lanning step in the p rocedure  is r e i n t e r p r e t a t i o n  of a l l  the

given I/O pairs in term s of the vo cabulary of the spec if ied model ( the
augmented h a l f — o r d e r  theory) . That  is , the o u t p u t  ha l f  of each I/O pair

is reinterpreted to be a list of fragmentation and atom migra tion
processes (po tential right hand sides of rules) which are feasib le

k explanations of the data point wi thin the specified model. This must be

done since we want the final rules to propose processes that produce

data points , not just the X and Y components of the data points. This

s tep  is called INTSUM , f o r  i n t e r p r e t a t i o n  and summary of the i n i t i a l

data. For each molecule in a given set , INTSIJII produces the pThusible

mass spectral  processes wh ich mi ght occur , i.e., breaks and combinat ions

of breaks , wi th  and wi thout  m igr a t i o n  of atoms. I~1TSU ~ then examines the

spec tra of the molecules looking for evidenc e (spectral peaks)  f or each

process .  Finally it  produces a summary  showing the to ta l  evidence

associated wi th each possible process.

4.3.2 Rule Generation

Af ter the data have been interpreted in INTSUM , control passes to

a heur is tic search program known as RULEGEN, for rule generation.

!WLEGEN creates general rules by selec t ing “impor tan t” features of the

molecular structure around the site of the fragmentations proposed by

IUTSIJII. These impor tan t  f e a t u r e s  are combined to f o r m  a suh graph

11
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descr i p t ion  of the local environment  su r round ing  the brok e n bon ds .  !~ach

subgr aph considered becomes the left hand side of a cand idate rule whose

• r igh t  hand side is INTSU II ’s proposed process. E s s e n t i a l l y  RUL E~~E~
• searches w i t h i n  the cons t ra in t s  of the h a l f — o r d e r  theory  t h r o u g h  a space

of these subgraph descript ions looking fo r  successively more s p e c i f i c

s u h g rap hs tha t are supported by successively “be t te r” sets of ev idence .

Conceptually , the program begins with the most general candidate

rule , X*X (where X is any unspec ified atom and where the asterisk is

used to indicate the broken bond , wi th  the de tec ted  f r agmen t  w r i t t e n  to

the  l e f t  of the  a s t e r i sk ) .  Since the most u se fu l  rules l ie somewhere

between the over ly—genera l  cand idate , X*X , and the overl y — s p e c i f i c

com p le te  molecular  s t r u c t u r e  ( w i t h  spec i f ied  bonds b r eak ing) ,  t h e

program ge nera tes  re f ined  d e s c r i p t i o n s  by successively s p e c i f y i n g

a d d i t i o n a l  f e a tu r e s .  This is a coarse search; f o r  e f f i c i e n c y  reasons

RULE GE~1 some t imes adds fea t’ires  to seve ral ,1odes a t  a time , w i t h o u t

considering the intermediate sub graphs.

• The program sys temat ica l ly  adds f ea tu re s  to subgraphs , a lways

making a “parent ” subgraph more spec i f i c , s t a r t i n g  wi th  the paren t  X*X.

(Re call that  each node can be described with any or all  of the fo l lowing

a t t r i b u t e s :  atom type , number of non— h ydrogen neig hbors , number of

h yd rogen neighbors , and number of doubly bonded neig h b o r s ) .  Working
outwa rd , the program assigns one attribute at a time to all atoms tha t

are the same number of a toms awa y from the breaking bond. Although

d i f f e r e n t  values may be assigned to each of these atoms , the  coarseness

of the search preven ts exam ina tion of subgraphs in which this attribute

is totally unimportant on some of these atoms. In addition , each of the

descendants of the parent X*X is checked to see if the  s u p p o r t i ng

• ev idence i s  “ b e t t e r ” (see below) t han  the evidenc e fo r  the p a r e n t .

Those which satisf y the test  become new pa ren t s  fo r  a next  level of

desc endants wi th one more feature specified. For example , f rom the rule
X*X the program will arrive , af ter several s teps , at rule (P.!)
( R I )  U — C — C ———— > N — C * C

12
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In (tU ) the only impor t an t  f ea tu res  are the  a tom types and the

connections of three atoms ; the other features and atoms have been

generalized away. The point of generalizing is to abstrac t away

unimportant attributes of atoms and unimportan t atoms.

The program adds specifications to candidate rules until it finds

a rule tha t  is (a)  specif ic  enough to make cor rec t  predic t ions  and ( b )

general  enoug h to account fo r  more than a few special  cases. ( 2 )

4.3.3 Rule Modification

The last phase of the pragrar. :  (called RULE M OD) evaluates  the

plausible rules generated by RUL E GEN and mod if ies them by making them

more general or more specific . itt order to extend the range of

app licabil ity of the rules , RULE1IOD uses a less constrained model than

RULEGEN. Rules generated by RULECEN under an augmented half—order

theory , e.g., in which onl y fragments con taining an oxygen a tom we re

cons idered , canno t immed iately be applied by a perfo rmance pr ogram

useing a more general model. Therefore RULEHOD refines the rule so tha t

it can stand on its own under a more general model. In contrast to

RULEGEN, R1JLEHOD considers negative evidence (incorrec t predic tions) of

rules in order to increase the accuracy of the rule’s applications

within the training set. RULEGEN perfo rms a coarse search of the rule

space for reasons of efficiency, leaving the fine tun ing to RULEIIOD.

RULEIIOD will typically output a se t of 8 to 12 rules cover ing

subs tantially the same training da ta po ints as the input RULECEN se t of
approx ima tely 25 to 100 rules , but wi th fewer incorrec t predictions.

• Th is program is written as a set of five tasks (corresponding to the
- 

•
, 

f ive subsections below) which we feel are closely analogous to this

aspect of human problem solving .

Selecting a Subset of Important Rules. As a first step, the

selection procedure is applied to the whole set of rule candidates

• produced by RULEGEN. The local evaluation in RULEGEN has ignored

nega tive ev idence and has not discovered that different RULEGEN pathways
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may y ie ld  ru les  wh ich are d if f e r e n t b ut exp lain many of the same data

points. Thus there is often a high degree of overlap in those rules and

they may make many incorrec t predictions .

To selec t rules , scores are calc ulated, the rule with the best

score selected , and the ev idence peaks suppo rting that rule removed fr om
the supporting evidenc e for other rules. Then the whole process is

repeated until either (i) all scores are below a selected threshold or

• (ii) all evidence has been explained. The scoring function (3) app lies

the standard of performance of the RULEIIOD critic discussed above.

Merging Rules. Although most of the redundant rules have been

dele ted in the first step of RULE~IOD, there may still remain sets of

rules that exp lain many of the same data points. For any such set of

• rules , the program attempts to find a slightly more general rule tha t

(a) includes all the evidence covered by the overlapping rules and (b)

does not bring in extra negative evidence. If it can find such a rule ,

t h e  overlapping rules are rep laced by the single compact rule.

Deleting Negative Evidence by Making Rules More Specific. RULE~IOD

tries to add attribute—value specifications to atoms in each rule in

• order to delete some negative evidenc e while keeping all of the positive

• ev idence.  This  involves local search of t h e  possible add i t ions  to the

subgrap h descr ip t ions  tha t were not  considered by R’L JLEGE N . Because of

the coarseness of RULEGEN ’s search , some ways of refining rules are not

• tried , ex cep t b y RITLEMOD. For examp le, rule (R2) below would be a
• specification of (Ri) that P.LTLEGEN would miss because it specifies

I different attributes (not just different valuea) for atoms that are the

• I 
same dis tance fr om the broken bond (as ter isk) :

(R2) N — C112 — C — — — —>  N — CH2 * C

In this case , the number of hydrogen neighbor s is speci f ied f o r  t he
• f irst left—hand atom but not for the first right—hand one .

Making Rules More General. RULITCEN often forms rules tha t ~rc r”~~r

spec ific th~in they need to he. At this point we have a choice whether

14
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to leave the rules as they are or to seek a more general form that

covers the same (and perhaps new) data points without introducing new

negative evidence. Rule (RI) for examp le , could be made mo re general by
removing the atom type specification on one of the first atoms next to

the as ter isk:
(Ri’) N — C — X  ~~~~~~~~~~~ N~~~~C * X

Aga in, because of the coarseness of its search , RULECEN could not have

considered this form of the rule. tie assume here that RULEGEN produc es

good approximations and that RULEMOD can refine them.

Selecting the Final Rule Set. The selection procedure described

abov e is app lied again at the very end of RULEMOD in order to remove

redundancies that might have been introduced dur ing generaliza tion and

specializa tion.

Evaluating the Rules. Rules may be evaluated by meas uring how well
• they explain , or “cover ”, the given spectra. We call this the

“exp lana to ry  powe r” of the rul es . tie also want to be able to estimate

how well they can he used to discr im inate the mos t plausible structures
from the rest in a list of cand idate explanations of an unknown spectrum

• (from a known class). We call this the “discriminatory power” of the

rules.

4.3.4 Integrating Subsequent Data

A requirement for any prac tical learning prog ram is the ability to

• integrate newly acquired data into an evolving knowledge base. New data

• nay dictate tha t additional rules be added to the knowledge base or tha t

existing rules be modified or eliminated. New rules may be added to the

rule base by running RULEGEN on the new data , then running RULE!IOD on
the combined se t of new and previously generated rules.

When an exis t ing  rule is modified , the issue is raised of how to
• m a i n t a i n  the i n t e g r i t y  of the m o d i f i e d  ru le  on i ts past t r a in ing

ins tances .  To see this  consider an example.  A new t r a i n i n g  ins tance is

acqui red  and , a f t e r  c r ed i t  ass ignment  quest ions are reso lved , i t  is



dec ided tha t rule R incorrectly “triggered” on some situation S. The

lef t h and side of  rule H. must be modified so tha t it will no longer

match S. In general there will be many possible changes to P. whic h will

disallow the match to S , but some will be better choices than others.

The correc t changes to U a re  those which do not a l t e r  past  cor rec t

app l i ca t ions  of R. Of course there is no way of knowin c~ wh ich of the

• possible changes to R will tur n out to be correc t upon exaninin~ still

more data , and onc e a sing le change is selected the p o s s i b l i t y  e x i s t s

that backtracking will he necessary at some future point. This whole

issue nay be viewe d as a problem of c red i t  ass ignment  among the f e a tu r . .~
a

wh ich make up the left hand side of F..

D i f f e r e n t  learning programs have taken d i f f e r e n t  approaches to
I

this problem of insuring that rule modifications are consistent wi th

past training ins~ ances.  Some [10) hav e assumed tha t the co r r ec t

performance of each rule on past data need not be preserved. Other

program s [14J keep past training ins tances  in memory so tha t  they  may be
reexamined to evaluate later changes to rules , and to allow back trac king
in cases where incorrec t changes to rules were made. S t i l l  other

programs [15 1 use domain specific heur i s t i c s  to select  the most  l ikely

change to R.

We are currently developing a method for representing all versions

of the lef t hand side of a rule wh ich are co ns istent with the observed
data for all iterations thus far. This representation is referred to as

the “vers ion spac e” of the rule. By examining the versio n space of R,
we can answe r the quest ion “Which of the recommended changes to R will

preserv e its performance on pas t ins tanc es? ”. The answe r is simply “Any

changes wh ich yield a vers ion of the rule con tained in the vers ion
space”. By using version spaces we avoid the problem of se lec t ing a

sing le u n r e t r a c t a h i e  m o d i f i c a t i o n  to H. . Instead all  the eler~ents  of t he

ve rsion space wh ich do not  m a t c h  some nega t ive  In s t an c e , S , are

re t a ined , and those wh ich do match  S are e l i m i n a t e d .  S i m i l a r l y ,  t ihen

new da t a  are  encounte red  in wh ich a s i t u a t i o n  S’ is found  to c o r r e c t l y

H 16



trigge r R, onl y those elements of the version space wh ich match S’ ar~
retained .

5 RESULTS

One measure of the proficiency of Ueta—DENDRAL is the ability of

the corresponding performance program to predict correc t spectra of new

molecules using the learned rules. One performance program ranks a list 
•

~~ of p laus ib le  hypo theses (ca ndida te molecules)  according  to the
• similarity of their predictions (predicted spectra ) to observed data.

The rank of the correct hypothesis (i.e. the molecule actually

associated with the observed spectrum ) provides a quantitative measure

of the “discr iminatory powe r” of the rule set.

The !leta—DENDRAL p rogram has success fu l ly red iscov e red known,
pub lished rules of mass spectrometry for two classes of molecules. More

importantly, it has disc overed new rules for three closely rela ted
fam ilies of structures for wh ich rules had not previously been reported.

fleta—DENDRAL’s rules for these classes have been published in the

chem istry literature [2). Evaluations of all five sets of rules are

discussed in that publication. This work demonstrates the u t i l i t y  of

Meta—DENDRAL for rule formation in mass spectrometry for indiv idual

classes of structures.

Recent ly  we have adapted the 1-teta—DENDRAL pr og ram to a second
• spectroscop ic tec hn ique , 13C—nuclear magnetic resonanc e (i3C—NMR)

spectroscopy [9). This new version provides the opportunity to direc t

the  induc t ion machinery  of ~1et a— PEN DRA L under a model of i3C—M~hR

spectroscopy. it genera tes  rules wh ich associa te  the resonance

f r e q u e n c y  of a carbon atom in a magnetic field with the local structural

env ironment of the atom . 13C—tJ~1R r,iles have been genera ted and used in

a candidate molecule ranking program similar to the one described above.

• 1 3C—IIMR rules formulated by the program for two classes of struc tures
• • have been s,..c cesnfully used to identif y tho spectra of additional

17
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molecules (of the same classes , but outside the set of train ing data

used in generating the rules).

The rule based molecule ranking program performs at the level of a

well educated chemist in both the mass spectral and l 3C—!~ IR domains. Je

v iew this performance as indicative of the quality of the rule base

disc overed by Meta—DENDRAL.

6 SUMMARY

• ~ie believe that automated knowledge base construc tion is feasib le

for cons truc ting high performance computer programs. The functional

compo nen ts of t~eta—DEND~AL are common to other induc t ion programs. The

Meta—DENDRAL approach of model—directed heuristic search through a

complex space of possible rules appears  well sui ted to many induc t ion
•

• tasks. The use ot a strong model of the domain to direc t the rule

sear (- 1 has heen demonstrated for rule formation in two areas of

chemistry. The higi- perfo rmance of prog rams wh ich use the genera ted
rules attests to the success of this learning strategy.

FOOTNOTES
(2). The program judges a rule to be an improvement over its

parent if three co nd itions hold: (a) the new rule pred ic ts fewe r
fragments per molecule than the parent (i.e. the new rule is more

specific); (b) it pred icts fragmentations for at least half of all the

molecules (i.e. it Is not too specific); and (c) either the new rule

pred icts fragmentations for as many molecules as its parent or the

paren t rule was “too general” in the following sense: the parent

pred icts more than two fragments in some single molecule or , on the

average , it predict s more than 1.5 fragments per molecule.

(3). The scoring function is Score = I * (P + U — 2N), where: I =
the average V—c omponent (fragment abundance) of positive evidenc e data



po ints; P the number of positive evidence instances for the rule; t =
the number of unique positive evidenc e instances for the rule; N = the
number of negative evidence instances for a rule.
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